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Montage (http://montage.ipac.caltech.edu/)

e An astronomical image mosaic service for the National Virtual Observatory (VAO)

e Originally developed by core team at JPL and Caltech (IPAC & CACR) — now at U. Chicago, too...;
grid architecture developed in collaboration with ISI; further research with other institutions

e Delivers custom, science grade image mosaics

— Animage mosaic is a combination of many images containing individual pixel data so that they appear to
be a single image from a single telescope or spacecraft

— User specifies projection, coordinates,
spatial sampling, mosaic size, image
rotation

— Preserve astrometry (to 0.1 pixels) &
flux (to 0.1%)

e Modular, portable “toolbox” design

— Loosely-coupled engines for image
reprojection, background
rectification, co-addition

o Flexibility; e.g., custom background

algorithm; use as a reprojection
and co-registration engine
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- Each engine is an executable
compiled from ANSI C
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== Color composite of co-registered
¥ 2MASS and MSX. Each square
: ; is 0.5°x 0.5°

GLIMPSE

3-color GLIMPSE image
mosaic over 1.1° x 0.8°
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Right: Spitzer IRAC 3 channel mosaic (3.6um in
green, 4.5um in red, and i-band optical in blue); high
redshift non-stellar objects are visible in the full
resolution view (yellow box).
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Montage v1.7 Reprojection:

mProject module

Arbitrary Input

Image .

Central to the algorithm is accurate
calculation of the area of spherical
polygon intersection between two pixels
(assumes great circle segments are
adequate between pixel vertices)

Input pixels
projected on
celestial sphere
Output pixe/;
projected on
celestial sphere
FITS header defines output projection
s /S [ ] NN
/ / N NN
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Reprojected 2 7 7 7 T N N \
Image Z /[ / / \ \ NN\

www.ci.anl.gov

www.ci.uchicago.edu



> Montage Workflow i B

: (Overlapping Tiles)
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Montage Initial Version

e Tested on a variety of architectures and problems
— Good science results

e Decent performance on a single processor

e MPI version (enabled through preprocessor
directives)

— Mostly round-robin parallelization of tasks in a stage
o Good scaling until problem/processor gets too small

— Dynamic: each stage uses files from previous stage(s)
— mAdd parallelization a bit more complicated

o Scaling depends on shared /O system performance

Parallel and Distributed Application Paradigms www.ci.anl.gov
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Many Task Computing (MTC)

MTC applications: a set of tasks, usually linked by file system
operations

— Tasks are usually sequential or parallel executables

— Set of tasks can be static or dynamic, homogeneous or heterogeneous

— Files output by one program are used as input by others

MTC applications can be described in many ways, including as in
a compiled program, as a DAG, in a script, etc.

MTC applications can include:

— Bag of tasks, MapReduce, multi-stage workflow, iterative MapReduce,
campaign, coupled components, ...

MTC Application space

A
\ 4

Problem composed of large Problem composed of small Single large problem;
number of sub-problems; e.g. number of sub-problems; e.g. e.g. PDE solution over
protein folding ensemble or parameter sweep single domain

v

Exascale application space
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MTC Application Challenges

e Goal: Easily program and efficiently execute
MTC applications on current and future parallel
and distributed computers

e Needs:
— Tools for describing MTC applications
— Middleware for executing MTC applications

— Future system characteristics to improve MTC
applications

D. S. Katz, T. G. Armstrong, Z. Zhang, M. Wilde, and J. M. Wozniak, Many Task Computing and Blue Waters, Technical Report CI-TR-13-0911,
Computation Institute, University of Chicago & Argonne National Laboratory, 2012. http://www.ci.uchicago.edu/research/papers/CI-TR-13-0911

S. Jha, D. S. Katz, M. Parashar, O. Rana, J. Weissman, “Critical Perspectives on Large-Scale Distributed Applications and Production Grids,” Best
paper at IEEE Grid 2009

www.ci.anl.gov
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Maps an abstract workflow
to an executable form

Pegasus http:/pegasus.isi.edu/

mFitPlane

Grid Information
Systems

Information about
available resources,
data location

mB

Static description

mAdd

8

4

Condor DAGMan

Executes the workflow I

MyProxy e

User’s grid credentials
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Montage Test Problem

o« 2MASS data, 6x6 degree @ m101

Stage # Tasks #In # Out In (MB) Out (MB)
mProject 1319 1319 2638 2800 5500
mimgtbl 1 1319 1 2800 0.81
mDiffFit 3883 7766 3883 31000 3900
mConcatFit 1 3883 1 3900 0.32
mBackground 1297 1297 1297 5200 3700

www.ci.anl.gov
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MPI run of M16, 6 degrees on 64 TeraGrid processors Pegasus run of M16, 6 degrees on 64 TeraGrid processors
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B mimgtbl [ |
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_ mBackground .
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S mFitExec || ) .
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o N © mConcatFit -
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g 1 g o —
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] mProject
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Time from Start (h:m:s) Time from Start (h:m:s)

D. S. Katz, G. B. Berriman, E. Deelman, J. Good, J. C. Jacob, C. Kesselman, A. C. Laity, T. A. Prince, G. Singh, and M.-H. Su, "A Comparison of Two
Methods for Building Astronomical Image Mosaics on a Grid," Proceedings of the 7th Workshop on High Performance Scientific and Engineering
Computing (HPSEC-05), 2005.
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MPI vs. Pegasus Discussion

e Both MPI and Pegasus timings ignore time to start job (queuing delay)
— MPI: queued job is shell script; Pegasus: queued job is Condor Glide-in
e Tasks are different
— MPI: run by stages, each is a sequential or parallel job
— Pegasus - mDag, Pegasus, then application: tasks are clustered by Pegasus/Condor
e Unused resources
— MPI - trailing tasks in a stage
— Pegasus - delays of up to 5 seconds from Condor/DAGman
— Both - sequential job bottlenecks
e Accuracy
— 1/0 dominates many tasks; in a multi-user environment, none of this is very precise
e Fault tolerance
— Pegasus supports DAG restart from previous state, MPI must rollback to previous stage
e Resources
— Pegasus can use parallel or distributed resources, MPI requires all nodes to have shared filesystem
e Performance
— MPI finishes in 00:25:33, Pegasus finishes in 00:28:25

e Conclusion: probably use Pegasus in production

www.ci.anl.gov
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Remaining (Montage/MTC) Challenges

e Implementation and tools are not general
— Development - could have been simpler
o MDAG is not a simple code
o Could have used Pegasus DAX API, but didn’t seem any simpler
o No way to make runtime decisions based on data
— Deployment and Execution
o Want to use other infrastructures, such as clouds

o Want to make runtime decisions based on resources
— Provide better fault tolerance than rescue DAG

o Want to control resources (e.g., networks)

www.ci.anl.gov
www.ci.uchicago.edu
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Frameworks as a solution?

Physical Infrastructure
e.g. TeraGrid/XD, Clouds, Future Data Systems

www.ci.anl.gov
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SAGA: In a thousand words..

“ ‘ Middleware / Services '

http://saga-project.github.io/

www.ci.anl.gov
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DAG-based Workflow Applications:

Extensibility Approach

Application
Development Phase

Pegasus

Generation & Exec.

Planning Phase
C-DAG

ad

SAGA-DAG
enactor

Saga-job-intf

www.ci.anl.gov
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SAGA-Montage Proof-of-concept

e Testsrun
— toy problem: m101 tutorial (0.2° x 0.2°)
— Useful for trying things — functionality
o digedag used for planning
— For this problem, takes about about 0.2 s — same as Pegasus
e Runs
— Local submission using fork
— Local submission using ssh/SAGA
— Local submission using Condor/SAGA
o Local submission using 2 of above 3 and 3 of above 3
— Queen Bee submission using ssh/SAGA
— EC2 submission using AWS/SAGA
o Remote submission to Queen Bee and EC2 using both ssh/SAGA and AWS/SAGA
o Local/remote submission to local, Queen Bee, and EC2 using fork, ssh/SAGA, and AWS/SAGA
e Unstudied(yet) issues:
— Need better understanding of application performance

— Tradeoffs between use of MPI components or sequential components?
A. Merzky, K. Stamou, S. Jha, D. S. Katz, “A Fresh Perspective on Developing and Executing DAG-Based Distributed Applications: A Case-Study of
SAGA-based Montage,” Proceedings of 5th IEEE International Conference on e-Science, 2009.

www.ci.anl.gov
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More MTC (Montage) Issues

e Why is an explicit DAG needed?

e User customization
— mDAG builds a DAG for a standard workflow

— What about a non-standard workflow?

o Experimenting with different options
— Build a set of plates with and without background rectification

o Changing a module
— mAdd uses mean for co-addition, could use median or count

— Changing mDAG.c is not reasonable for most users

e A scripted version of Montage may be better in
some cases, and may be more natural for some
users

www.ci.anl.gov
www.ci.uchicago.edu
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o Swift is designed to compose large parallel workflows, from serial or parallel
application programs, to run fast and efficiently on a variety of platforms

— A parallel scripting system for Grids and clusters for loosely-coupled applications -
application and utility programs linked by exchanging files

— Easy to write: simple high-level C-like functional language, allows small Swift scripts to
do large-scale work

— Easy to run: contains all services for running Grid workflow, in one Java application
o Works on multicore workstations, HPC, Grids (interfaces to schedulers, Globus, ssh)

— Fast: efficient, scalable and flexible execution
o Swift/K scaling: O(1M) tasks
o Collective data management being developed to optimize I/0

o Swift/T in development with >10x performance improvements

e Used in neuroscience, proteomics, molecular dynamics, biochemistry, economics,
statistics, and more

o http://www.ci.uchicago.edu/swift

M. Wilde, N. Hategan, J. M. Wozniak, B. Clifford, D. S. Katz, |. Foster, "Swift: A language for distributed parallel scripting," Parallel Computing,
v.37(9), pp. 633-652, 2011.

www.ci.anl.gov
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Example Driver Code(s)

import {.}

MosaicData header <"header.hdr">; Black code builds mosailc,
Table images_tb1 <"images.tb1">; Red code needed for
Image mosaic <"final/mosaic.fits">; background rectification
JPEG mosaic_jpg <"final/mosaic.jpg">;

Image projected_images[];

Table difference_tb1l <"diffs.tb1">;

Table fits_images_tbl <"fits.tbhl">;

Table rectification_tbl <"rectification.tbl">;
Table stat_tbl <"stats.tbl">;

Image difference_images[];

Image rectified_images[];

Image raw_image_files[] <filesys_mapper; location = "raw_dir", suffix = ".fits">;
projected_images = mProjectBatch( raw_image_files, header );

images_tb1l = mImgtb1( projected_images );

difference_tb1 = mOverlaps( images_tb1 );

difference_images = mDiffBatch( difference_tbl, header );

fits_images_tb1l = mFitBatch( difference_images, difference_tbl );
rectification_tbl = mBgModel( images_tb1, fits_images_tbl );

rectified_images = mBgBatch( projected_images, images_tb1, rectification_tbl );
mosaic = mAdd( rectified_imagesORprojected_images, images_tbl, header );
mosaic_jpg = mJPEG(mosaic );

www.ci.anl.gov
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Example Wrapper Code

( Image proj_imgs[] ) mProjectBatch( Image raw_imgs[], MosaicData hdr )

{
foreach img, i in raw_imgs
{
Image proj_img <regexp_mapper; source = @img, match = ".*\\/(.*)", transform =
"proj_dir/proj_\\1">;
proj_img = mProject( img, hdr );
proj_imgs[ i ] = proj_img;
}
ks

app ( Image proj_img ) mProject( Image raw_img, MosaicData hdr )

{
mProject "-X" @raw_img @proj_img @hdr;

www.ci.anl.gov
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Further Swift-Montage Work

e Better understand Montage performance

e Improve Swift

— To improve Montage performance at the runtime
level

— Using AMFORA (was: AME & AMES)

Z. Zhang, D. S. Katz, J. Wozniak, A. Espinosa, | Foster, "Design and Analysis of Data Management in Scalable Parallel Scripting," Proceedings of the
International Conference for High Performance Computing, Networking, Storage and Analysis (SC12), 2012

www.ci.anl.gov
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Swift-Montage Performance

Other
7.9%

B Data Movement B Execution OOther

Execution time distribution of Montage test problem on 512 BG/P CPU cores

e Challenge: reduce non-execution time

www.ci.anl.gov
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AMFORA

e AMPFORA: an Any-scale MTC Engine and MTC runtime File System
— https://github.com/zhaozhang/amfora

Swift Script Task List

foreach i in files{

TaskID Binary Input Output Rule

temp[i].= produce(files(i]); . 0 -b /bin/produce -i files0 -o temp0 -a filesO temp0
output[i] = consume(templi]);
} N-1  -b /bin/produce -i filesN -o tempN -a filesN tempN
™ N -b /bin/consume -i temp0 -0 outputO -a tempO0 outputO
@v éi\l-1 -b /bin/consume -i tempN -0 outputN -a tempN outputN

Login Node @

[ AME Submitter

File List @'

5
FilelD Filename State @ O

0 filesO  Shared / Compute Node

N-1 filesN Shared \ 4
N temp0 Invalid

5N-1 tempN Invalid
2N output0 Invalid

3N-1 outputN  Invalid 7N -/
N~

www.ci.anl.gov
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General Improvements

e Base Case: Staging

— Automatically move input files from GPFS to local RAM disk
— Read/write to local RAM disk

— Automatically move output files from local RAM disk to GPFS

— Runs in 45% of the time as MPI implementation, which reads
and writes files on GPFS

e Data cache

— Automatically move input files from local RAM disk (where
produced) to local RAM disk (where needed)

e Data aware scheduling
— Launch task where input data is (on local RAM disk)

Parallel and Distributed Application Paradigms www.ci.anl.gov
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Dataflow Patterns

PP Q QDD g,

L 1 I 0 B L I I — Identify at
\\ \\ |I // \\\ \\ |I /// ti
\\\\\ : /// \\\\\ : /// runtime
\
g - Apply
é 55 optimizations
Gather Reduce

Pipeline Scatter Multicast

O Job Data —» Dbaa - ___ Data
Generation Transfer
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File Pattern Improvements

o Collective gather

— Rather than moving files one at a time from sources to a single destination, create
a minimum spanning tree and collectively move the files in log,(n) stages

— Works well when transfer time is dominated by network latency, or files are
available at once

e Asynchronous gather
— Worker that will run task requests all source files
— If available, worker fetches the file; if not, worker asks for notification
— Allows overlapping of computation and communication

— Works well when transfer time is dominated by network bandwidth, or files are
available gradually

www.ci.anl.gov
www.ci.uchicago.edu
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Montage - AME & AMFS Performance

e Those bars that are less than 1 show improvements.

e GPFS base case refers to staging input/output data from/to GPFS

— Already 45% improvement over MPI
B mProject M mimgtbl ® mDiffFit ™ mConcatFit ™ mBackground © Sum_Para © Sum_All

— 16
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Montage work by others

e C. Hoffa, G. Mehta, E. Deelman, T. Freeman, K. Keahey, B.
Berriman, J. Good, “On the Use of Cloud Computing for Scientific
Workflows,” SWBESO08: Challenging Issues in Workflow
Applications, 2008

— Ran Montage on virtual and physical machines, including a private cloud-
like system

e Montage used as prototype application by teams involved in
ASKALON, QoS-enabled GridFTP, SWIFT, SCALEA-G, VGrADS, etc.

www.ci.anl.gov
www.ci.uchicago.edu
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Montage Summary

e« Montage is a custom astronomical image mosaicking service that emphasizes
astrometric and photometric accuracy

e Public release, available for download at the Montage website:
http://montage.ipac.caltech.edu/

e« MPI version of Montage:
— Baseline performance
— Requires a set of processors with a shared file system
e Pegasus/DAGman version of Montage:
— Almost equivalent performance to MPI version for large problems
— Built-in fault tolerance
— Can use multiple sets of processors
e SAGA/digedag version of Montage:
— Starts to address IDEAS: Interoperability, Distributed Scale-Out, Extensibility,
Adaptivity, Simplicity
— Have shown that this can be done, but haven’t gotten too far yet
o Swift version of Montage
— Flexible scripting, no explicit DAG
— By modifying Swift runtime, can get very good parallel performance

www.ci.anl.gov
www.ci.uchicago.edu
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Application Skeletons

e Goal: Represent important applications

e With only the information needed to run the
application in a distributed context

e But without requiring building the actual
application, or finding data files, ...

e Compactly, e.g., few parameters for Bag of Tasks
— Input data size (could be generalized as a distribution)

— Output data size (could be generalized as a distribution,
or a function of input data size)

— Computing time (could be generalized as a distribution,
or a function of input data size)

— Number of tasks

Z. Zhang, D. S. Katz, "Application Skeletons: Encapsulating MTC Application Task Computation and I/0,” Best paper of 6th Workshop on Many-
Task Computing on Clouds, Grids, and Supercomputers (MTAGS), co-located with SC 2013.

www.ci.anl.gov
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Challenge

e Balance the easy of programming and usage with the
performance gap between Skeleton applications and real

applications

Hard

Skeleton
App

Ease of Programming

Easy

Small Performance Difference Large

www.ci.anl.gov
www.ci.uchicago.edu
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Types of Applications that can be

Represented by Skeletons

e Bag of Tasks
— Set of independent tasks
— Represents MG-RAST, TIP, science gateway, ...
e MapReduce (distributed)
— Set of map tasks, then reduce tasks
— Represents HEP histograms, genomics/metagenomics, ...
 Iterative MapReduce
— Represents clustering, linear algebra
e Campaign

— Similar to iterative bag of tasks, but tasks can change from one iteration
to the next

— Represents Kalman filtering
o Multi-stage Workflow (most general for now)
— Represents Montage, ...
e Concurrent tasks
— Represents fusion simulation, climate simulation (2" phase)

www.ci.anl.gov
www.ci.uchicago.edu
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1. Describe
application (choose
skeleton, skeleton

parameters)

(create executables
& data files)
and description

(abstract DAG)

3. Program
workflow (build
Swift script, run

Pegasus, etc.)

Parallel and Distributed Application Paradigms

Run
application in
system
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Skeleton Montage vs. Real Montage

mOverlaps
mConcatFit
mBackground

Montage 282.3 139.7 10.2 426.7 60.1 288.0 107.9 788.8 2103.7
Skeleton 281.8 136.8 10.0 4125 59.2 288.1 106.2 781.8 2076.4
Error -0.2% -2.1% -0.2% -3.3% -1.5% 0.03% -1.6% -0.9% -1.3%

e Similar results for BLAST, CyberShake

Z. Zhang, D. S. Katz, “Using Application Skeletons to Improve eScience Infrastructure,” submitted to IEEE eScience 2014.

www.ci.anl.gov
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Skeleton Questions/TODOs

e Explore other methods for specifying skeleton
parameters

e Define compute time in resource independent
manner

e Add to details of tasks

— For tasks that are internally parallel: number of
internal components, internal communication
requirements (to be used for mapping the task to
appropriate resources)

e Turn skeletons into a ‘open source’ project —
more contributors, more users

Parallel and Distributed Application Paradigms




Further Work

e Goal: Use MTC paradigm to develop parallel and distributed data-intensive scientific
applications to utilize a broad range of systems, with the flexibility and performance
that scientific applications demand, using heritage (legacy) software

e Possible solutions: Frameworks (e.g. SAGA), MTC runtime (e.g. Swift, AMFORA)

o Application challenges
— What are the application components?
— How are they coupled?
— How is functionality expressed/exposed?
— How is coordination handled?
— How to support layering, ordering, encapsulations of components

e Framework/runtime challenges
— Coordinate data & computing; use task placement; and optimize I/O for best performance
— Support range of architectures and fault-tolerance
— Support runtime (dynamic) scheduling (including networks), including use of information systems
— Avoid duplicating things that work — e.g., Pegasus’s planner

e System challenges
— Tradeoff of costs & rewards: balance user & system utility (time to solution vs. system utilization)
— Impact future systems through knowledge gained

e Tool challenges
— Application skeletons support framework/runtime & systems research
— What other tools are needed?

www.ci.anl.gov
www.ci.uchicago.edu
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